Unit 7: Detection and Monitoring

Using technology to determine the presence and the concentration of hazardous materials in an incident area.

1

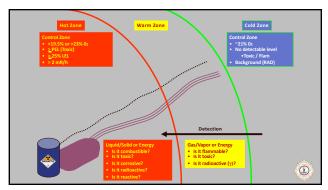
Unit 7 Objectives

- The student shall identify the basic procedure for using detection and monitoring equipment for the establishment of hazard control zones.
- The student shall identify the purpose, operational usage, and limitations of the following types of detection and monitoring equipment:
 - Combustible gas indicator
 - Electrochemical cells for detecting oxygen or toxic vapors
 - Ionizing radiation detection equipment
- The student shall interpret basic instrument data and select appropriate actions to take.

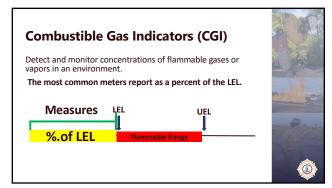
2

Terminology

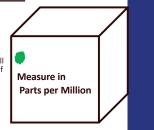
- **Detection** is the process by which an emergency responder discovers the presence of a contaminant in an area.
- Monitoring is the process by which emergency responders measure the amount of material present in an area at a certain time. This allows the emergency responder to see if the problem is getting better or worse.
- Concentration is the amount of material in a given volume.
- Action levels are reference points. When an action level is reached, a specific action should be considered to prevent further exposure or harm.



Use the data to determine:


- Presence and amount of flammable or toxic vapors
- · Identify control zones
- Determine public protection actions
- Develop response tactics
- Identify the proper level and type of personal protective equipment
- Evaluate response techniques
- Determine what type of decontamination.

,



5

Electrochemical cells • Sensors used to detect specific gases or families of gases. Made up of an electrical circuit and an electrolytic solution

- The current produced by the cell is proportional to the amount of material in the air sample from the environment.
- This change in current is reported onto a digital meter face.

Special considerations when using electrochemical cells

- Temperature extremes can damage electrochemical cells and make them slow to respond.
- Continued exposure to the material or exposure to high concentrations can shorten the life of the sensor.
- Chemicals in the same chemical family as the sensor may give a reading that may be misinterpreted by the user.

Oxygen-sensing electrochemical cells

Indicates % (per cent) of Oxygen in atmosphere.

Less than 19.5% O₂ Deficient

More than 23.5%

A 0.1% change on an oxygen-sensing electrochemical cell means that there is 5,000 PPM of "something else" present in the atmosphere.

- Presence of halogen (fluorine and chlorine) will cause false high O2
- Carbon monoxide may "poison" the oxygen sensor and limit its life.
- May be affected by altitude changes, humidity, and temperature.

Combination (multigas) meters

- Manufacturers place different sensors inside one instrument package.
- Multiple sensors to look for environments that are:
 - Flammable
 - Toxic
 - Oxygen-enriched or deficient

•

10

The most common multigas meters include:

- A CGI sensor to detect flammable atmospheres
- An oxygen sensor to detect oxygen-deficient or enriched atmospheres
- One or more electrochemical cells for detecting toxic gases. The most commonly seen cells are for detecting hydrogen sulfide and carbon monoxide, but others can be present.

11

Action Levels

Hazard	Action Level	Action		
Flammability	≥ 25% LEL	EXPLOSION/FIRE HAZARD! Leave area and ventilate.		
Oxygen enriched	≥ 23.5% (v/v) (Virginia specific)	INCREASED FIRE HAZARD! Secure oxidizer source and ventilate.		
Oxygen deficient	< 19.5% (v/v)	SCBA USE REQUIRED!		
Ionizing radiation	2mR/hr above background	CONSULT RADIATION SPECIALIST!		

Toxic Gas Action Levels

PEL – establish control zones IDLH – mandatory use of SCBA

Chemical	Formula	OSHA PEL(ppm)	IDLH (ppm)
Ammonia	NH3	50 (TWA)	300
Benzene	СеНе	1 (TWA)	500 Ca
Carbon monoxide	со	50 (TWA)	1200
Chlorine	Cl2	1 (Ceiling)	10
Hydrogen sulfide	H ₂ S	20 (Ceiling)	100
Sulfur dioxide	SO ₂	5 (TWA)	100

13

Radiation Detection

- lonizing radiation detection equipment can be broken into two broad categories of equipment based on use:
- Survey monitors Survey monitors are designed to monitor the field of radiation being emitted from radioactive materials at a given point in time.
- Dosimeters Dosimeters are instruments used to monitor total accumulated radiation exposure. Dosimeters are issued to individuals to wear so that an individual's exposure can be calculated and monitored.

14

Radiation-detection equipment is usually chosen based on:

- The type of radiation to be detected
- The capability to have a high enough range span to measure the intensity of the suspected material

Detection and	Monitoring	Data	Inter	pretatio

Flammable Atmospheres – Using a combustible gas indicator or a multi-gas meter where flammability is reported as %LEL...

- At 10% LEL Proceed


 Between 10% LEL and 25% LEL Proceed with continuous monitoring

 At or above 25% LEL Elammability Hazard Withdraw from area

Oxygen-containing Atmospheres – Using an electrochemical cell designed to detect oxygen...

At 19.5% or less – Oxygen Deficient Atmosphere – SCBA or SAR use required by OSHA
Above 19.5% but less than 23.5% - Continue monitoring
At or above 23.5% – Oxygen Enriched Atmosphere – Protective equipment required

- Carbon Monoxide-containing Atmospheres Using an electrochemical cell designed to detect carbon monoxide...

16

Detection and Monitoring Data Interpretation

Hydrogen Sulfide-containing Atmospheres – Using an electrochemical cell designed to detect hydrogen sulfide...

- At or above 10 PPM Respiratory protection required
 At or above 332 PPM IDLH exclusion zone

Radiation Detection

If the unit alarms or records radiation 5 times background or more, the emergency responder should contact the Virginia Emergency Operations Center (800-468-8892) and ask to speak with a state Hazardous Materials Officer, who can assist the responder with the incident.

17

Operating Principles

Each manufacturer has its own instructions for use, there are some general principles that can be applied to all combination meters.

- The instrument is turned on and allowed to warm up.
- The instrument should be exposed to clean air and prepared (calibrated) based on the manufacturer-specific instructions.
- The instrument can be carried into the environment suspected of containing contaminants by a $responder\ wearing\ appropriate\ protective\ equipment.$
- The operator of the instrument should walk slowly into the atmosphere and measure the atmosphere at different heights, not just waist-level.
- Remember, there are several gases lighter than air.
 - Carbon monoxide, has a vapor density of 0.9.
 - Propane has a vapor density of about 1.5. · Instrument has a response time.
- The instrument readings should be compared to the emergency responder action levels to see an action applies.

